Gummihupe
29-01-2013, 12:14
Ich habe auf einer Seite mehrere Matrizen dargestellt (21 um genau zu sein), das sieht aber noch etwas wüst aus. {align} hat da schon was gebracht, allerdings sind überwiegend 2 Matrizen in einer Zeile dargestellt und einige haben auch noch einen Vorfaktor. Dadurch verrutscht in der jeweiligen Zeile natürlich alles, was hinter der ersten Matrix steht.
Daher: Gibt es da eine schönere Lösung, sodass die Matrizen 2 bzw. 3 spaltig angeordnet werden? Hier (http://www.dieplanschkuh.de/bsp.pdf) die Beispielseite zum gucken.
Als Bispiel sollen da nun aus (2.3) und (2.4) die Matrizen Dx und Dy jeweils untereinander erscheinen. Bei der Zeile zu (2.Cool dann eben DL1 und DL2 unter Dx und Dy und DL3 um eine Position versetzt (hoffentlich versteht das hier einer ^^). Mit align bekomme ich das nämlich nicht so ganz hin...
\begin{align*}
D_x &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \label{filt_grad} %gradient
D_y = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \addtag \\
D_x &= \frac{1}{8} \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}, \qquad %sobel
D_y = \frac{1}{8} \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \addtag \\
D_{xy} &= \frac{1}{8} \begin{pmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \qquad %sobelAD
D_{yx} = \frac{1}{8} \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix} \addtag \\
D_{x} &= \frac{1}{6} \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}, \qquad % prewitt
D_{y} = \frac{1}{6} \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \addtag \\
D_{xy} &= \frac{1}{6} \begin{pmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \qquad % prewittAD
D_{yx} = \frac{1}{6} \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix} \addtag \\
D_{L_1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad % laplace
D_{L_2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad
D_{L_3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{pmatrix} \addtag \\
D_{N} &= \frac{1}{15} \begin{pmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{pmatrix}, \qquad \addtag
D_{E} = \frac{1}{15} \begin{pmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -5 \end{pmatrix} \\
D_{S} &= \frac{1}{15} \begin{pmatrix} -3 & -3 & -3 \\ -3 & 0 & -3 \\ 5 & 5 & 5 \end{pmatrix}, \qquad
D_{W} = \frac{1}{15} \begin{pmatrix} 5 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & -3 & -3 \end{pmatrix} \\
D_{NE} &= \frac{1}{15} \begin{pmatrix} -3 & 5 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -3 \end{pmatrix}, \qquad
D_{SE} = \frac{1}{15} \begin{pmatrix} -3 & -3 & -3 \\ -3 & 0 & 5 \\ -3 & 5 & 5 \end{pmatrix} \\
D_{SW} &= \frac{1}{15} \begin{pmatrix} -3 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & 5 & -3 \end{pmatrix}, \qquad
D_{NW} = \frac{1}{15} \begin{pmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{pmatrix}
\end{align*}
Habs auch mit nem
eqnarray versucht oder die
&= anders zu setzen, aber das klappt alles nich ganz so.
Kann man die Matrizen in ner Tabellenform anordnen?
Daher: Gibt es da eine schönere Lösung, sodass die Matrizen 2 bzw. 3 spaltig angeordnet werden? Hier (http://www.dieplanschkuh.de/bsp.pdf) die Beispielseite zum gucken.
Als Bispiel sollen da nun aus (2.3) und (2.4) die Matrizen Dx und Dy jeweils untereinander erscheinen. Bei der Zeile zu (2.Cool dann eben DL1 und DL2 unter Dx und Dy und DL3 um eine Position versetzt (hoffentlich versteht das hier einer ^^). Mit align bekomme ich das nämlich nicht so ganz hin...
\begin{align*}
D_x &= \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \label{filt_grad} %gradient
D_y = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \addtag \\
D_x &= \frac{1}{8} \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}, \qquad %sobel
D_y = \frac{1}{8} \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \addtag \\
D_{xy} &= \frac{1}{8} \begin{pmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \qquad %sobelAD
D_{yx} = \frac{1}{8} \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix} \addtag \\
D_{x} &= \frac{1}{6} \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}, \qquad % prewitt
D_{y} = \frac{1}{6} \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \addtag \\
D_{xy} &= \frac{1}{6} \begin{pmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \qquad % prewittAD
D_{yx} = \frac{1}{6} \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix} \addtag \\
D_{L_1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad % laplace
D_{L_2} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad
D_{L_3} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -12 & 2 \\ 1 & 2 & 1 \end{pmatrix} \addtag \\
D_{N} &= \frac{1}{15} \begin{pmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{pmatrix}, \qquad \addtag
D_{E} = \frac{1}{15} \begin{pmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -5 \end{pmatrix} \\
D_{S} &= \frac{1}{15} \begin{pmatrix} -3 & -3 & -3 \\ -3 & 0 & -3 \\ 5 & 5 & 5 \end{pmatrix}, \qquad
D_{W} = \frac{1}{15} \begin{pmatrix} 5 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & -3 & -3 \end{pmatrix} \\
D_{NE} &= \frac{1}{15} \begin{pmatrix} -3 & 5 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -3 \end{pmatrix}, \qquad
D_{SE} = \frac{1}{15} \begin{pmatrix} -3 & -3 & -3 \\ -3 & 0 & 5 \\ -3 & 5 & 5 \end{pmatrix} \\
D_{SW} &= \frac{1}{15} \begin{pmatrix} -3 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & 5 & -3 \end{pmatrix}, \qquad
D_{NW} = \frac{1}{15} \begin{pmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{pmatrix}
\end{align*}
Habs auch mit nem
eqnarray versucht oder die
&= anders zu setzen, aber das klappt alles nich ganz so.
Kann man die Matrizen in ner Tabellenform anordnen?